The LOST Algorithm: Finding Lines and Separating Speech Mixtures

نویسندگان

  • Paul D. O'Grady
  • Barak A. Pearlmutter
چکیده

Robust clustering of data into linear subspaces is a frequently encountered problem. Here, we treat clustering of one-dimensional subspaces that cross the origin. This problem arises in blind source separation, where the subspaces correspond directly to columns of a mixing matrix. We propose the LOST algorithm, which identifies such subspaces using a procedure similar in spirit to EM. This line finding procedure combined with a transformation into a sparse domain and an L1-norm minimisation constitutes a blind source separation algorithm for the separation of instantaneous mixtures with an arbitrary number of mixtures and sources. We perform an extensive investigation on the general separation performance of the LOST algorithm using randomly generated mixtures, and empirically estimate the performance of the algorithm in the presence of noise. Furthermore, we implement a simple scheme whereby the number of sources present in the mixtures can be detected automatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Natural Gradient Convolutive Blind Source Separation Algorithm for Speech Mixtures

In this paper, a novel algorithm for separating mixtures of multiple speech signals measured by multiple microphones in a room environment is proposed. The algorithm is a modification of an existing approach for density-based multichannel blind deconvolution using natural gradient adaptation. It employs linear predictors within the coefficient updates and produces separated speech signals whose...

متن کامل

A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)

Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...

متن کامل

Phoneme-Dependent NMF for Speech Enhancement in Monaural Mixtures

The problem of separating speech signals out of monaural mixtures (with other non-speech or speech signals) has become increasingly popular in recent times. Among the various solutions proposed, the most popular methods are based on compositional models such as non-negative matrix factorization (NMF) and latent variable models. Although these techniques are highly effective they largely ignore ...

متن کامل

Short-Time Kurtosis of Speech Signals with Application to Co-channel Speech Separation

Recent work into the separation of mixtures of speech signals has shown some success. One particular method is based on the assumption that scalar mixtures of speech signals have a kurtosis less than that for either source. Under this assumption, a simple gradient search algorithm is employed to maximize kurtosis thereby separating the source speech signals from the mixture. While this assumpti...

متن کامل

Blind Non-stationnary Sources Separation by Sparsity in a Linear Instantaneous Mixture

In the case of a determined linear instantaneous mixture, a method to estimate non-stationnary sources with non activity periods is proposed. The method is based on the assumption that speech signals are inactive in some unknown temporal periods. Such silence periods allow to estimate the rows of the demixing matrix by a new algorithm called Direction Estimation of Separating Matrix (DESM). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008